AD-A160 959 ERROR BOUNDS FOR NEIITON’S lTERﬁTES DERWED FROM THE
KANTOROVICH THEOREM(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER T YAMAMOTO JUL 85

UNCLASSIFIED MRC-TSR-2843 DARG29-88-C-8841 F/G 12/1

ISEEEERNEEN

END

Fmen

one




A

!

=
s s

o

EEEE

FFEEFEEEE

FEFE

=
B

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU-OF STANDARDS-1963-A

'




b et Sad b B gt Btk A i Sl N S, b AR B L SN, DARCERA A P B A L L RS oo Sy i g R

MRC Technical Summary Report #2843

ERRUOR BOUNDS FOR NEWTON'S ITERATES
DERIVED FROM THE KANTOROVICH THEOREM

Twtsuro Yamamoto

AD-A160 959

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

July 1985

o o
Q. (Received July 15, 1985)
| FW)
a————
(.
e Approved for public release
L] 0.. ]
- Distribution unlimited
ey -
S
Sponsored b
P Y Py
]
U. S. Army Research Office Y
P. O. Box 12211 ~
Research Triangle Park N
North Carolina 27709 ’:'-\'
{a
® et
: _C\‘J

vty
a2 _a A



3
- K
/; -

UNIVERSITY OF WISCONSIN~MADISON
MATHEMATICS RESEARCH CENTER

ERROR BOUNDS FOR NEWTON'S ITERATES DERIVED FROM THE KANTOROVICH THEOREM
Tetsuro Yamamoto*

Technical Summary Report #2843
July 1985

ABSTRACT

- In this paper, it is shown that the upper and lower bounds of the errors

PR ST m
in the Newton iterates recently obtained by Potra-Pégk (11] and Miel [7]), with
the use of nondiscrete induction and majorizing sequence, respectively, follow
immediately from the Kantorovich theorem and the Kantorovich recurrence

relations. It is also shown that the upper and lower bounds of Miel are

sharper than those of Potra-Ptik. %th : Y2 Lw\b/M»{/ Ans 4/; /
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SIGNIFICANCE AND EXPLANATION
To find precise error bounds for iterative solutions of equations is one
of the important subjects in numerical analysis. This paper shows that the
upper and lower bounds of the errors in the Newton iterates recently obtained
by Potra-Pt&k [11] and Miel [7] follow from the Kantorovich theorem, and that

the bounds of Miel are sharper than those of Potra-Pték.
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ERROR BOUNDS FOR NEWTON'S ITERATES DERIVED FROM THE KANTOROVICH THEOREM

*
Tetsuro Yamamoto
- ’j,,l-«

( 1. Introduction 7 “
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"7 The Kantorovich theorem for the Newton method is of fundamental ifrportance

in the study of nonlinear equations in Euclidean and Banach spaces. Let X and

T A SR U SN Ty

Y be Banach spaces, D be an open convex subset of X and F : DC X+ Y be

x

a Fréchet differentiable operator which satisfies a Lipschitz condition in D.

'S

i, TPl A

Then, the theorem guarantees the existence and uniqueness of a solution of the

equation F(x) = 0 and the convergence of the Newton process to the solution.

By replacing the original assumption that F belongs to c2-class in D by a
weaker one of the Lipschitz continuity of F' in D, an affine invariant
version of the theorem is stated as follows:

Theorem 1 (Kantorovich~Akilov ({4; Theorem 6 (1.XVIII)]). Let F : DC X+ Y be

Fréchet differentiable. Assume that, at some xg € D, F'(xo) is invertible

and that
IF (xg) (F'(x) - F'(y))1 S KIx - yl,  x,y €D (N
1 (x) " F(x)0 g, h=Kn g V2, (2)
S(xgt*) C D, t* =2m/(1 + /1T -2 . (3)
Then:

i) The Newton iterates x,,.q = x, ~ F'(xn)'tf(xn). n 2 0, are well-defined,
lie in B(xq,t*) and converge to a solution x* of F(x) = 0.
ii) The solution x* is unique in S(xy,t**) N D, t** = (1 + /1 - 2h)/K if

Z‘ < 1' and in s(xO‘t..) if 2h = 10
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i1ii) Error estimates

A (n = 0)

2" )% "y 21,

(4)

Ix* - xhl £

are valid.
Remark 1. The importance of such an affine invariant formulation is stressed in
Deuflhard-Heindl (2].
Remark 2. The condition (3) may be replaced by the weaker conditions
xg € D, B(xyt*-n)CpD, (5)

which are due to Schmidt [14]. In fact, by induction on n and the well-known
majorant principle for the Newton iterates, we c&n prove that, under the
assumptions (1), (2) and (5), the Newton iterates are well-defined and
x, € 8(xq,t* =n), n 2 1.

Theré are many literatures ([1},[(3]),(5)-(71,(9]1-(11],[16]) on the
improvements of the estimates (4). For example, under the assumptions of
Theorem 1 (or, by replacing (3) by (5)), the following results hold.

Theorem 2 (Gragg-Tapia (3]).

2n
2 im0 Ix, = x.0 4if 2h < 1
h B X1 " % '
Ix* - x I < 1-9 (6)
n =
1-n - 1
2" Mx, = xg! if =1,
and
2ix - x| n-1
ntl__n CIx*-x1<02 x -x 0, n>1,
= n = n n-1 =
n (7)
/ 02
1+ d1 + =
(1 + 02 )2

where 0 = t*/t** = (1 = /1 =~ 2h)/(1 + /1 - 2h).
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Theorem 3 (Potra-Pt&k [11]). let a = /1 - 2h/K and

Y(t)=v/a;+4t2+4t/cz+t2-(t+/a2+t2).

Then
2 2
- ® - - -
Y(Ixn+1 xnl) < Ix x 1< J& +Ix xn_1l o . (8)
Theorem 4 (Miel [7]). Let A = t** = t*, fThen
n
aer ~ %l <|x*-x|<——z—"°2| -x_a?
= n = *n Xn-1
[ ot (9)
4 1-0
1+ +xe o LTSN
1+9
if 2h < 1, and
21"“(|/1+2n|x -x 0 ~1) < Ix* ~ |<n-1| -x a2 10
n n n+1 xh s 'x xh = n xh n-1 (10)

if 2h = 1.

2 ¢+ n and define the sequence {tn} by

Remark 3. Let f£(t) =4 Kt
tg =0, tpuq=t, = £t )/E'(t ), n 32 0.
Then the well-known majorant principle due to Kantorovich asserts that
'x'-xn' St*-tn' nzo. (11)
The more general arguments are developed in Ortega-Rheinboldt [9] and Schmidt
(14]), [{15]. On the basis of Ostrowski's results [10; Appendix F], however, we
can show that the bounds (11) are ihe same as (6), provided that

n = lx1 - xol. Furthermore, we note that the upper bounds in Theorems 2-4

coincide for n = 1, and are equal to t¥* - ty=(1~h - Y1 =« 2h)/K with

n= 'x1 - xolo

Theorem 2 was derived with the use of the Kantorovich recurrence relations.

Theorems 3 and 4, improved versions of Theorem 2, were obtained recently by

nondiscrete induction and the majorizing sequence, respectively. In (7], Miel
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has mentioned that it turns out that the upper bounds in (9) are sharper than
those in (8), and that numerical experiments also indicate that the lower bounds
in (9) are finer than those in (8). 1In this paper, with the use of the same
technique as in the previous paper [17], we shall show that Theorems 3 and 4

follow immediately from Theorem 1 and that Theorem 4 improves Theorem 3.

2. Basic lemmas

To derive Theorems 3 and 4 from Theorem 1, we need the following basic
lemmas and give their proofs for the sake of completeness.
Lesma 1. Under the assumptions of Theorem: 1, define three sequences {Bn},

tn,}, and {n} by

B = 1 =
()} ¢ By -
1 hn-

n
_ n-1'n=-1
Mo = Ixy = Xbe M) 57wy ¢
n-1
by
ho‘h"“,h’u“n. 2, n-1'2'00.'
2(1 - hn_1)

respectively. Then we have

1

IF'(x )T F'(xg)l < B and IF*(x ) F(x )0 gn_ .

-1

In particular, if 2hn =1, then 2h, =1 and n_ =2 'n = 270,

n-1
Proof. This is a direct application of the original recurrence relations to
F'(xg)"'F (cf. Rall [13]). Q.E.D.

Iemma 2. The speed of convergence of the iterates is estimated by

n=1 2
* - * o .
Ix xnl < 3 Ix xn_ ] (12)




Similarly we have

RBn 2
- xnl £ Ix - x n . (13)

hx 2 n n-~1

n+1

Proof. The estimates (12) follow from (1), Lemma 1 and the relations

X* - x = -F'(xn_1)-1{F(X') - F(x _,) = F'(x__ )(x* - x 4}

= ~F'(x,_4) " F'(xg) £ Fixg)~"

. {F'(xn_1 +elx* - x _4)) - F'(xn_1)}(x* - x _q)dt .

Similarly, the estimates (13) follow from the relations

Xna1 = Xn = F'0xn) 7 Fx)
= F'(xy) " M(F(xyoq) + F'(xp_q)(xy = Xpoq)

1
+ £ (Frax _q + t(x = x _4)) = F'(x _)Hx - x _,)at]

1
= F'(x) " P xg) [ [ 1~"(x0)'1 .
0

. {F'(xn + t(xn - xn_1)) - F'(xn_1)}(xn - xn_1)dt] . Q.E.D.

-1
Iemma 3 (Basic Error Estimates). Under the assumptions of Theorem 1, we have

- xn+1 - xnl
< Ix* = x ¥ < « (14)

14+ /1 + 21cr.=,n|xn+1 - x i 1+ /1 - 21<B“uxn+1 - x|

x N 21

21x -
n+1 n

Proof. Replace xo and n in Theorem ' by x, and lxn+1 - xnl,
respectively. Then (1) is replaced by
1P (x ) (T (x) = FU(y)IE S AF'(x )T IF (x )0 o IEY(xg) T (F'Ux) - U (y) N
‘mnlx-y" x'y€D .

Therefore, the upper bounds in (14) follow from Theorem 1. Furthermore, we have

Sy LIy S Iea




n 2
Ix - < - x*} + * o — I * - + * -
n+1 xnl < lxn+1 x*| Ix xnl < 5 Ix xnl Ix xnl ’
or

KB
h * 2 *

—— Ix* = x 1 + Ix* -x 0 - Ix -x01 >0.
2 n n n+1 n =

Solving this yields the lower bounds in (14). Q.E.D.

Iesma 4. We have

Bn/1 ~2h =/1 -~ 2, n20, (15)

and

2
B/1 -2+ (I _,) 1, n21. (16)

Proof. The equalities (15) and (16) are trivial for n =0 and n = 1,

respectively. If n 2 1, then we obtain

hn-1 1- 2hn-1 = 1- Zh0

n 2 - 2 XX - 2
(1-n_% (1-n_p? (1-n_ (1 - hy)

1

(1-2m82 ,

which proves (15). Furthermore, if n 2 2, then we have

2 ™1 2
ann (1‘hi)
i=0
n-2 2 2 n-2 2
=(1-2Z _4) T (1=h) +h° T (1-ny)
T =0 1 =1 -0
n-2 2
=1-2h+{kB _n . I (1-h))
i=0
=1« 2h + (Kn )2
- n=-1
> n-2
}: since B,_qy N (1 - hy) = 1. This proves (16). Q.E.D.
tf« i=0
L,:
4'

x)




3. Proof of Theorem 3

Let us now prove Theorem 3. We put e, = lan - xnl. Then, by Lemma 4, we

have

B! = /1 <zn + (Knn_1)2 2 /1 -+ (xen_1)2 .

Hence we obtain from lLemmas 2-4

Ix* - x 0 <
n=

A e O i e = o e

A
[

A
3
t
-h
L]
2]
N
+
®
3N
[
-t
]
[~

= 2 e
f—zn+(xen_1) +/1-on

where a = /1 - 2h/K. Next, to derive the lower bounds in (8), we observe that i

Pt IR 9

by Lemma 4

[2 2 1 2 1
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?{ which are equivalent to

b 2. .2 __ 2,2, 2 ]

:= (fa” + e 1 en) 20" + LI (17) 3

‘:’ Moreover we have k]

V:‘:; a + en_1 ; er‘, n= 1'2'000 . (18) 1

\"\ N
= In fact, the inequalities (18) follow from the inequalities -

a ,
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Hence we have from (17)
/az+e2 > e +/a2+e2-
n=-1= n n
Consequently we obtain from Lemma 3
2en
Ix* - xnl 2
1 +/1 4+ 2KB e
nn
2e
- n
/ 2 2
+
1+ 71 2en/ a +“n—1
2en
2
/ 2 2
+
1+ 71 Zen/ a + en_1
2 “n
1+‘/1+2e/(e +/c2+e2)
n n n
2 _(e_ + fa® + e2)
= n n n
en + /az + e: + /(en + Jaz + e:)(kn + laz + e:)
=vle) .
%l’_.ﬁ This completes the proof of Theorem 3.
\b“l
‘3,'::1'
:'i‘n,';
e 4. Proof of Theorem 4
:‘::3 To prove Theorem 4, we use Gragg-Tapia's result
h‘\ )
w1
?ﬁ 1 V1 2h
n - -
- 8% = =, n=012... . (19)
};-_: 1 + /1 - Zhn
A
-8
A ST COTE O e S 'is {"'-CS SRR S LA A S R S T e e A TR T TR A T T T
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If 2h < 1, then we have from (19)

n n
Y1 = Zh, 1 1-06%2 2 1 -g¢2

B, = - T RTE T & (20)
A== &, T+ 02

where A = t** - t*. If 2h = 1, then obviously we have B, = 2" and

n
1+ E— e - 1) .

2en _ 2en _.n (
1 +Y1 + 2l<Bnen / 2n 2n-1 n n
1+ /1 4+ a=—2¢
n n

Therefore the lower bounds in Theorem 4 coincide with those in Lemma 3.

Furthermore, we obtain from (20) and (19)

2 KB n KB KB
n 2 n

2 14T I 1+ /T

0
-
-
+
@

N

A

n

’

if 2h ¢ 1. Hence the upper bounds in (9) reduces to

mne§-1 Kexza-1
Ix* - x 1 < = — . (21)
1+/T- 2 B +/1-2n

which follow immediately from Lemmas 2 and 3. The upper bounds in (10) also
reduce to (21) because B, = 2" and K = 1/2n if 2h = 1. The proof is

completed.
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5. Observations

L It ]

.
N =
ety

By our proofs of Theorems 3 and 4, we see that Potra-Pt8k's upper bounds

ot

1

are obtained by replacing B; in the last expression of (21) by the smaller

Y
s
Wt

—
Mg e

v

quantities /qi- 2h + (Rbn_1)2- Similarly the lower bounds Yy(e ) in (8) are

.
O
hed

obtained if we replace KB, in the lower bounds in (14) by the larger
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quantities (e, +va + e:) + Therefore we can conclude that Theorem 4 is
finer than Theorem 3. We remark also that Gragg-Tapia‘'s upper bounds in (6) and

(7) are equal to

2n!'l Tn
T = and en_1 ¢ (22)
oy e /T H I -1

respectively (cf. Yamamoto {17)). As was shown in [11], the upper bounds

of Potra-Ptik are sharper than (22). Furthermore, it is easy to see that the
lower bounds of Potra-Ptik improve those of Gragg-Tapia in (7). (This fact
remains unproved in [11].) To prove this, we note that the lower bounds in (7)

may be written

2e

1+71 + 2,
and that

en < nn - “n
= + -
en + laz + ez nn + Juz + n: nn (xBn+1)

where we have used the fact that the function g(t) = t/(t + /az + tz) is

1= M

monotonically increasing with respect to t. Hence we obtain that

Zen Zen
Y(en) = > .

"1+ + 2
1 + /<k+ 2en(en + /02 + e;":)-1 n
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